Tradeasia - Leading Chemical Supplier 🔍 🌐
    CAREER

    >

    >

    Crude Glycerine 80% (Soya/Argentina Origin)

    Crude Glycerine 80% (Soya/Argentina Origin) in Tradeasia

    IUPAC Name

    propan-1,2,3-triol

    Cas Number

    56-81-5

    HS Code

    1520.00.00

    Formula

    C3H8O3

    Basic Info

    Appearance

    Light yellow to dark brown, viscous liquid

    Common Names

    Glycerol

    Packaging

    20 MT / Flexi Bag

    Brief Overview

    Crude glycerine, a naturally sweet and viscous liquid, exhibits hues ranging from light yellow to dark brown. It represents the unrefined counterpart of glycerine and is derived from diverse sources, including both natural and chemical feedstocks. Found originally in vegetable oils, fats, and animal fats in the form of triglycerides, crude glycerine emerges as a byproduct from biodiesel manufacturing plants and oleochemical industries. The growing emphasis on renewable energy, particularly the increased production of biodiesel, has led to a concurrent rise in crude glycerine production. Specifications for crude glycerine commonly include an 80% glycerine composition, with the remaining content comprising impurities such as methanol, soap, catalyst, salts, non-glycerine organic matter, and water.

    Manufacturing Process

    Degumming

    Degumming is a critical step in refining vegetable oil, involving the centrifugal removal of phosphatides. The addition of water prompts the precipitation of phosphatides dissolved in the oil, which, due to their increased water content, become heavier and are efficiently separated through centrifugation. This process eliminates impurities, enhancing the oil's quality and extending its storage life.

    Deacidification

    Deacidification, a subsequent phase, employs solvent extraction to reduce the concentration of free fatty acids in vegetable oils. Methanol is introduced to dissolve free fatty acids, crucial for preventing oil oxidation and unpleasant odors. The removal of these compounds is imperative for prolonged storage and refining.

    Transeferication/Saponification

    Following deacidification, the deacidified oil undergoes transesterification/saponification, involving hydrolysis. This process, conducted under elevated temperature and pressure with the aid of water, breaks down triglyceride chains into glycerol/glycerine and fatty acids. This step not only makes glycerine accessible for extraction but also sets the stage for further refining.

    Brief Overview

    Crude glycerine, a naturally sweet and viscous liquid, exhibits hues ranging from light yellow to dark brown. It represents the unrefined counterpart of glycerine and is derived from diverse sources, including both natural and chemical feedstocks. Found originally in vegetable oils, fats, and animal fats in the form of triglycerides, crude glycerine emerges as a byproduct from biodiesel manufacturing plants and oleochemical industries. The growing emphasis on renewable energy, particularly the increased production of biodiesel, has led to a concurrent rise in crude glycerine production. Specifications for crude glycerine commonly include an 80% glycerine composition, with the remaining content comprising impurities such as methanol, soap, catalyst, salts, non-glycerine organic matter, and water.

    Manufacturing Process

    Degumming

    Degumming is a critical step in refining vegetable oil, involving the centrifugal removal of phosphatides. The addition of water prompts the precipitation of phosphatides dissolved in the oil, which, due to their increased water content, become heavier and are efficiently separated through centrifugation. This process eliminates impurities, enhancing the oil's quality and extending its storage life.

    Deacidification

    Deacidification, a subsequent phase, employs solvent extraction to reduce the concentration of free fatty acids in vegetable oils. Methanol is introduced to dissolve free fatty acids, crucial for preventing oil oxidation and unpleasant odors. The removal of these compounds is imperative for prolonged storage and refining.

    Transeferication/Saponification

    Following deacidification, the deacidified oil undergoes transesterification/saponification, involving hydrolysis. This process, conducted under elevated temperature and pressure with the aid of water, breaks down triglyceride chains into glycerol/glycerine and fatty acids. This step not only makes glycerine accessible for extraction but also sets the stage for further refining.

    Related Products

    +